
Nanomaterials for Hydrogen Storage Applications

Presented by: Dr. Ramesh Kumar K Assistant Manager-Nanotechnology HPCL Green R&D Centre

Contents

H) Why Energy Storage?

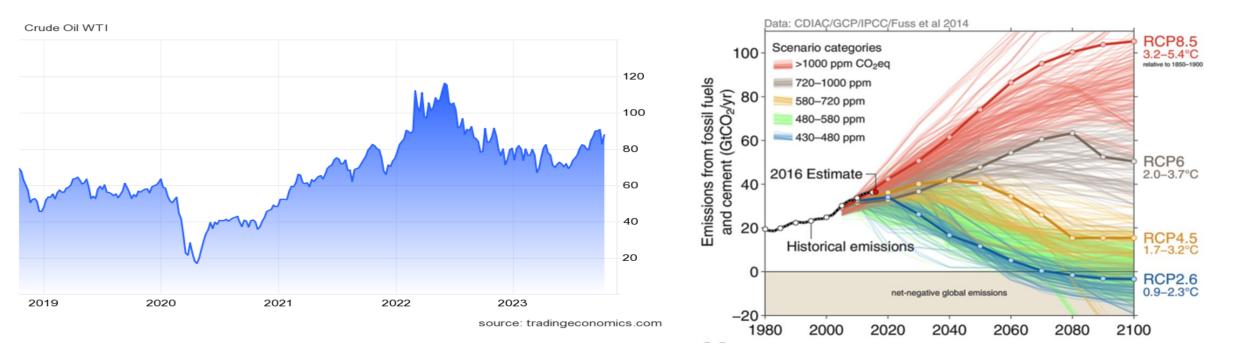
How Hydrogen Energy is Stored?

Nanomaterials for Hydrogen storage

HPGRDC at Hydrogen Storage

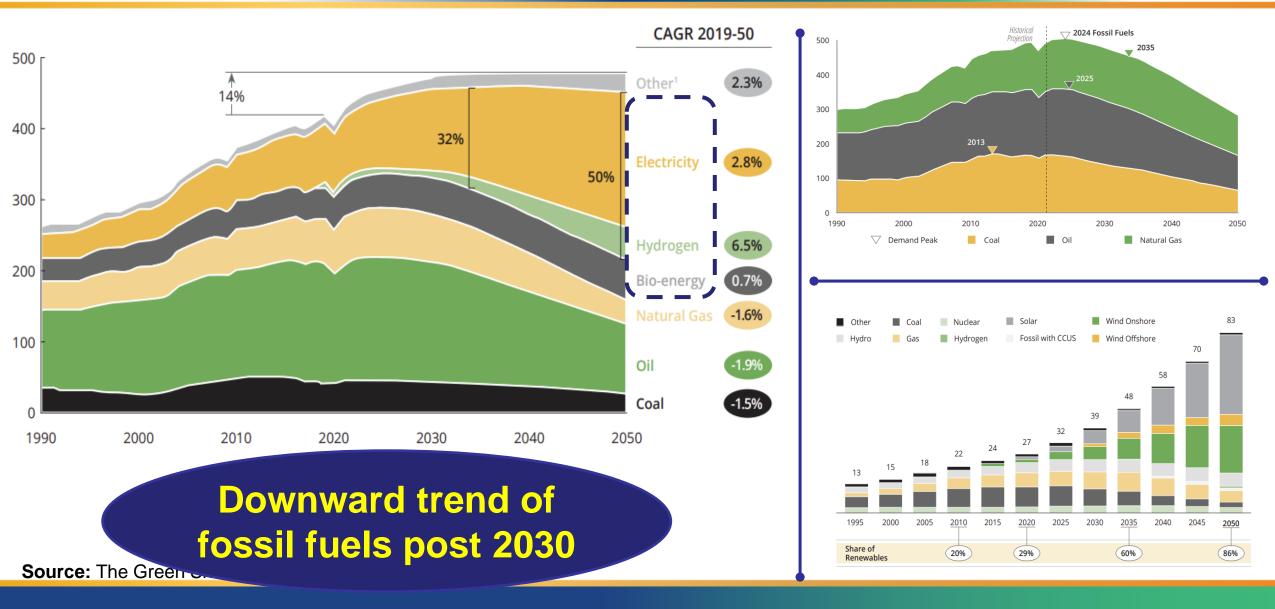
Future Prospective

 H_2


 H_2

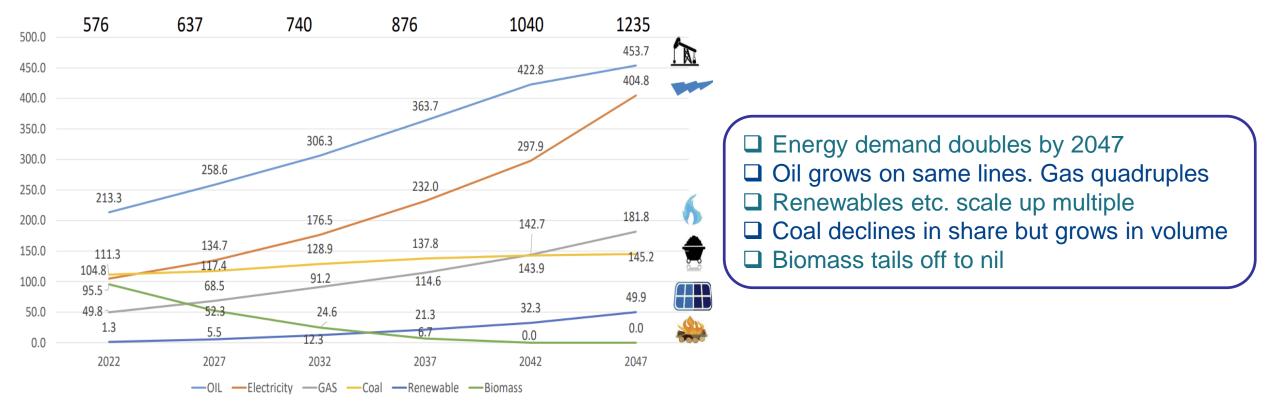
Η,

Introduction


 \checkmark Motor vehicles create approximately one-third (30%) of all carbon dioxide (CO₂) emissions

 \checkmark CO₂ emissions from burning of fossil fuels are a significant contributor to global warming and climate change

Global Energy Mix



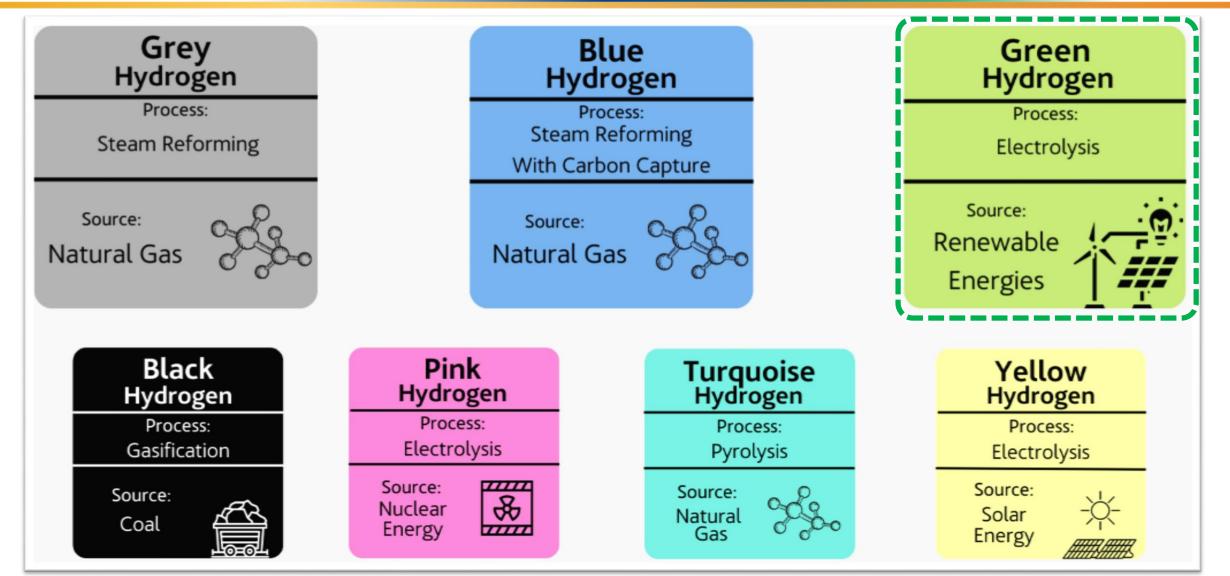
Indian Energy Mix/Fuel Scenario

Introduction

- ✓ Among the renewable energy sources, hydrogen can replace the existing fossil fuels and can provide solutions to the world's increasing energy demands and climate change, since it has high calorific value (142 MJ/ kg) and also clean and environmentally compatible that do not generates greenhouse gases
- ✓ On-board hydrogen storage continues to be challenging because gaseous hydrogen should be contained within a small volume without adding significant weight to a vehicle

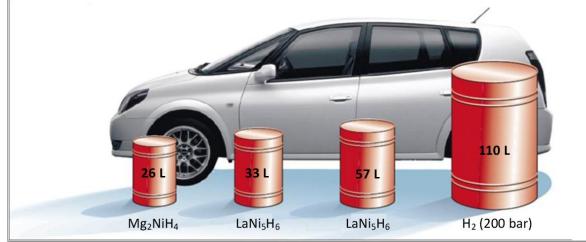
H₂ Advantages:

- High energy density (120-142 MJ/kg)
- Low density (0.09 kg/m³ at STP)
- Zero emission fuel source

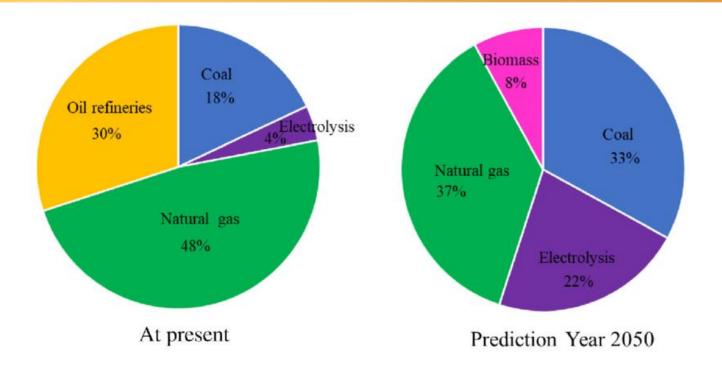

H₂ Challenges:

- Explosive
- Storage problems
- Transportation problems

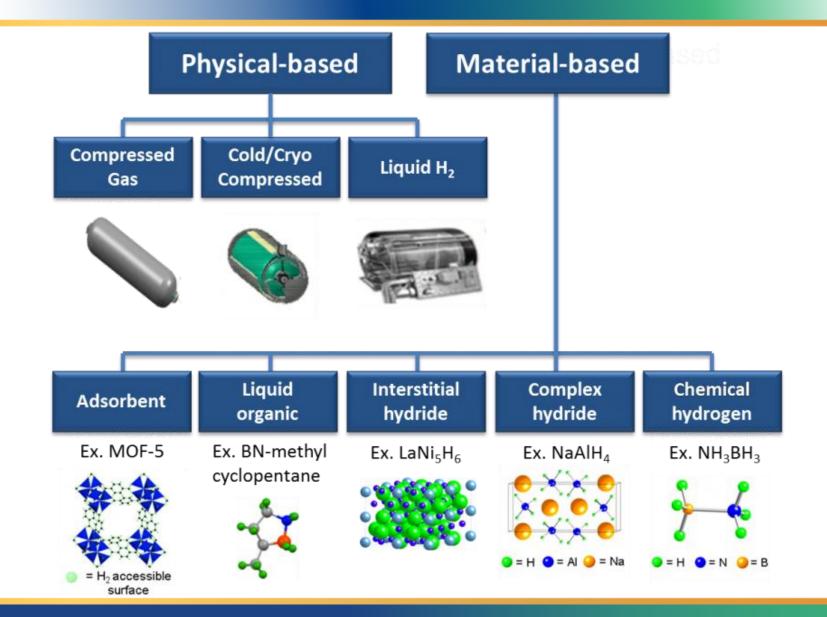
Types of Hydrogen



- US DoE targets production of green Hydrogen 10 MMTPA by 2030, 20 MMTPA by 2040 and 50 MMTPA by 2050
- DoE's targets to produce hydrogen at \$2/kg by 2026 and \$1/kg by 2031 (\$1 per 1 kilogram in 1 decade ("1 1 1"))
- India's National Green Hydrogen Mission has set a target of producing 5 MMTPA of green hydrogen by 2030
- The US DoE has set hydrogen storage targets for light-duty automobiles. The targets are:
 5.5 wt % for 2025
 6.5 wt % as the ultimate target
- For realistic driving distances, typically 4 kg of H₂ is required, which occupies nearly 44 m³ at ambient pressures and temperature conditions

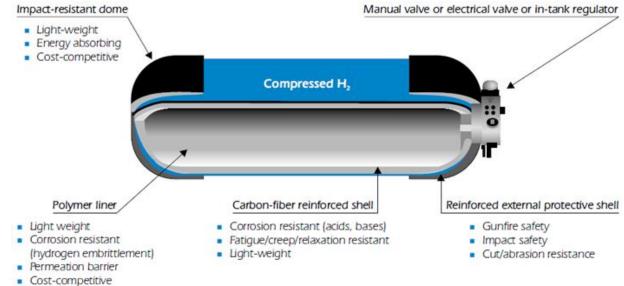

Why Hydrogen Storage?

Sources of Hydrogen



Renewable sources: Wind, solar, geothermal, and biomass
 Electricity: From the grid or from renewable sources
 Other resources: Water, Nuclear power & Biogas

How Hydrogen is Stored?



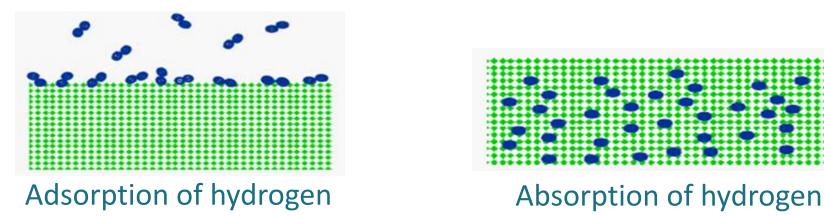
Storage Methods

Material	Max	Advantages	Disadvantages	Impact-resistant de
	pressure (psi)			 Light-weight Energy absorbi Cost-competiti
Steel	3600	Low cost	Heavy, low capacity, susceptible to corrosion	
Aluminum	5000	Lightweight	Limited capacity, expensive	Polymor lin
Fiber- reinforced plastic	10,000	Lightweight, corrosion- resistant	Limited capacity, expensive	Polymer lin Ught weight Corrosion resista (hydrogen embr Permeation barn Cost-competitive Flexible in size
Carbon fiber- reinforced plastic	10,000	Lightweight, high capacity, corrosion- resistant	Expensive, complex manufacturing process	
	Steel Aluminum Fiber- reinforced plastic Carbon fiber- reinforced	pressure (psi) Steel 3600 Aluminum 5000 Fiber- reinforced plastic Carbon fiber- reinforced	pressure (psi)Steel3600Low costAluminum5000LightweightFiber- reinforced plastic10,000Lightweight, corrosion- resistantCarbon fiber- reinforced plastic10,000Lightweight, high corrosion- resistantCarbon fiber- reinforced plastic10,000Lightweight, high capacity, corrosion-	pressure (psi)Low costHeavy, low capacity, susceptible to corrosionSteel3600Low costHeavy, low capacity, susceptible to corrosionAluminum5000LightweightLimited capacity, expensiveFiber-10,000Lightweight, corrosion- resistantLimited capacity, expensiveFiber-10,000Lightweight, corrosion- resistantExpensive, complex manufacturing plasticCarbon fiber- reinforced10,000Lightweight, high capacity, capacity, plasticExpensive, complex manufacturing process

Hydrogen storage method	Capital cost	Operating cost	Total cost
Compressed gas storage	Relatively low	Low	Relatively low
Liquid hydrogen storage	Relatively high	High	Relatively high
Solid-state storage	High	Relatively low	High

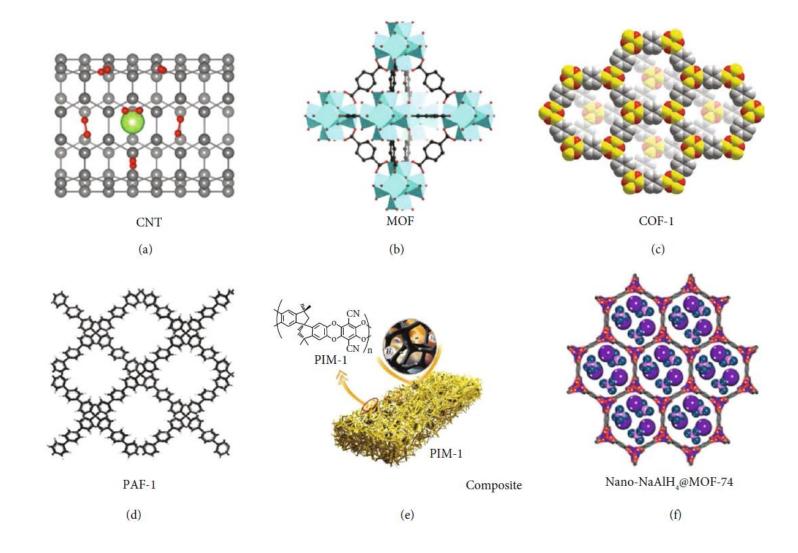
Storage method	Cost per unit of stored energy (\$/kWh)
Compressed hydrogen	20-30
Liquid hydrogen	15-25
Metal hydrides	30–70
Chemical hydrides	40-150
Carbon materials	5–25

Journal of Energy Storage 72 (2023) 108404



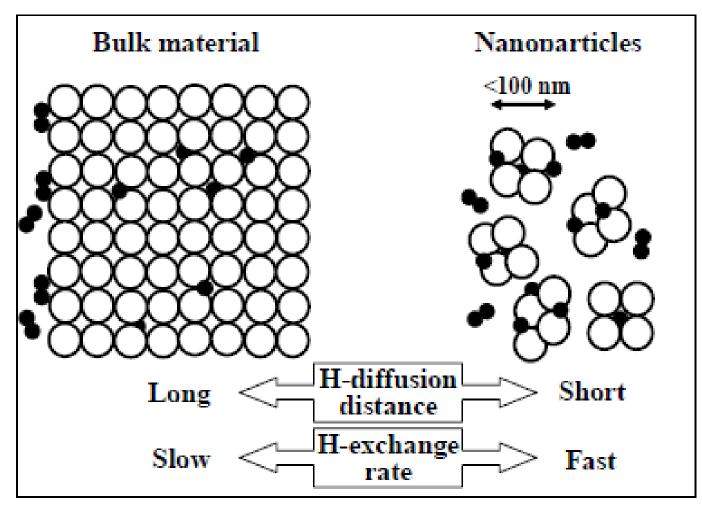
Hydrogen Storage by Adsorption/Absorption

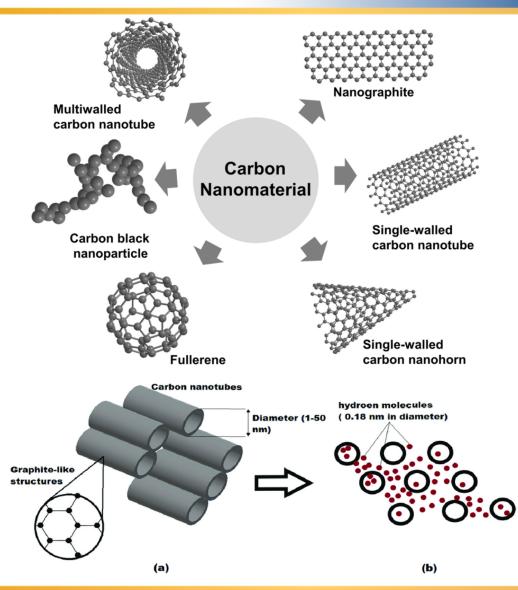
In adsorption, hydrogen is attached to the surface of a material either as hydrogen molecules or as hydrogen atoms.


In absorption, hydrogen is dissociated into H-atoms, and then the hydrogen atoms are incorporated into the solid lattice framework.

Because of weak interaction, significant physisorption is only observed at low temperatures (<273 K). Due to weakness of the van der Waals bonding, **low temperatures and elevated pressures** must be applied to achieve significant hydrogen storage densities using adsorption.

Nanomaterials for Hydrogen Storage




Nanomaterials are superior to macroscopic bulk materials due to higher surface area

Carbon-Based Nanomaterials

Carbon material	Storage conditions Temp. (K)/Press. (bar)	BET surface area $(m^2 g^{-1})$	Hydrogen capability (wt%)
AC (Maxsorb)	77/30	3306	5.70
AC (Maxsorb)	303/100	3306	0.67
AC (AX-21)	77/60	2745	10.80
AC (KOH-treated)	298/100	2800	0.85
AC (KOH-treated)	77/20	3190	7.08
AC (KOH-treated)	77/20	2770	6.20
AC (KOH-treated)	77/20	3000-3500	7.03
AC (KOH-treated)	77/19	687	2.14
AC (Pt-doped)	298/100	2033-3798	1.10
AC (Pd-doped)	298/80	2547	5.50
AC ((Ni-B)-doped)	77/1.0	976	1.80
SWCNT	133/0.4	-	5-10
CNT	273-295/1.0	290-800	≤1.0
CNT (film)	298/10	-	8.0
MWCNT	298/148	_	6.3
CNT (Li-doped)	653/1.0	130 (specific)	20
CNT (K-doped)	343/1.0	130 (specific)	14
MWCNT (Ca-doped)	- (electrochemical)	_	0.3
MWCNT (Co-doped)	- (electrochemical)	_	1.05
MWCNT (Fe-doped)	- (electrochemical)	-	1.5
MWCNT (Ni-doped)	- (electrochemical)	-	0.75
MWCNT (Pd-doped)	- (electrochemical)	-	0.4
CNF	298/120	51	6.54
CNF (KOH-treated)	77/40	1500-1700	3.45
CNF (N-doped)	298/100	870 (specific)	2.0
CNF (Ni-doped)	298/100	1310	2.2

10.34133/2021/3750689

MOFs for Hydrogen Storage

> Metal	Framework	Storage conditions Temp. (K)/Press. (bar)	BET surface area (m ² g ⁻¹)	Hydrogen capability (wt%)	
that c molec	MOF-5	(a) 78/20 (b) 298/20	2500-3000	(a) 4.5 (b) 1.0	'linker'
morec	IRMOF-8	298/10	1801	2.0	
≻Due 1	MOF-177	(a) 78/70 (b) 298/100	4600	(a) 7.5 (b) 0.62	e area
(tuna	NU-100	77/56	6143	10.0	
(corror	NU-109	77/45	7010	8.30	
1040-200 100	NU-110	(a) 77/45 (b) 298/180	7140	(a) 8.82 (b) 0.57	
Metal node	MOF-399	(a) 77/56 (b) 298/140	7157	(a) 9.02 (b) 0.46	
2	Cr-MIL-53	77/16	1020	3.1	
38	Al-MIL-53	77/16	1026	3.8	
2	Cu-MOF-5	(a) 77/65 (b) 298/65	1154	(a) 3.6 (b) 0.35	S
8	MOF-210	(a) 77/80 (b) 298/80	6240	(a) 17.6 (b) 2.7	ity
	Be-MOF	(a) 77/ 1.0 (b) 298/95	4030	(a) 1.6 (b) 2.3	_/3750689

Metal hydrides and complex hydrides offer high gravimetric capacity. However, the high operating temperature and low reversibility hindered the practical implementation

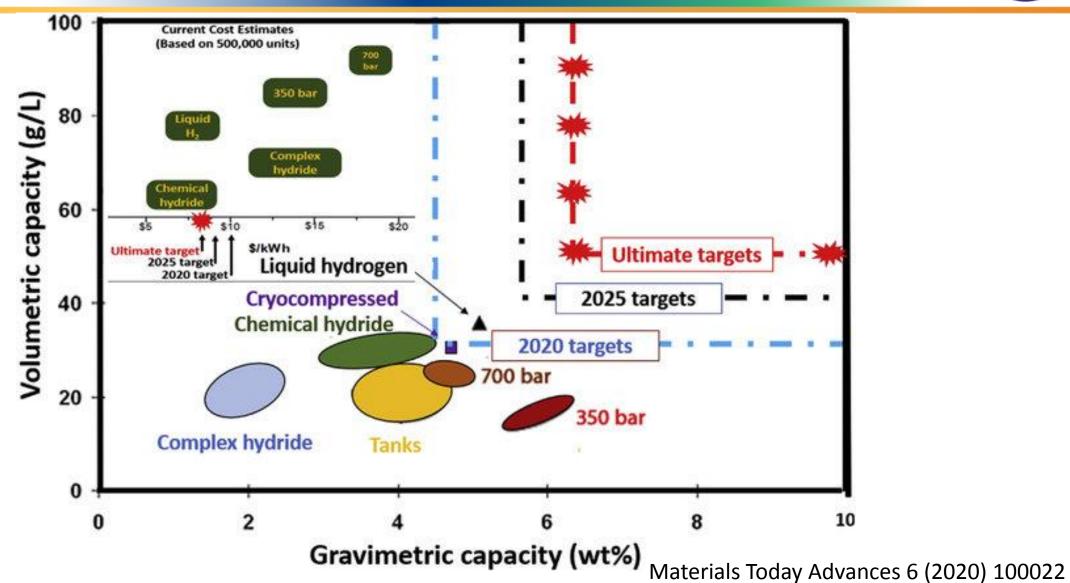
Table 4 – Hydrogen absorption/desorption properties of various complex hydrides.				
Complex hydride	Temperature (K)	Pressure (MPa)	Hydrogen storage capacity (wt.%)	
$LiBH_4 + LiBH_{3.75}F_{0.25}$	T _{des} : 373	0.1	9.6	
$LiBH_4 + SiO_2$	T _{des} : 373	5.0	13.5	
NaAlH ₄ + 2.0 mol% Ti(OBu) ₄	T _{abs} : 423	11.4	4.0	
	T _{des} : 433			
$NaAlH_4 + 1.0 mol\% TiCl_3$	T _{abs} : 323-383	-	5.6	
NaAlH ₄ + 1.0 mol% Ti	T _{abs} : 443	15.4	5.6	
	T _{des} : 423			
NaAlH ₄ + 4.0 mol% Ti	T _{des} : 373	-	4.8	
NaAlH ₄ Ti(OBu ⁿ) ₄ & Fe(OEt) ₂	T _{des} : 374	8.8	4.0	
NaAlH ₄ + 4.0 mol% Ti	T _{des} : 450	2.5	1.7	
Na ₃ AlH ₆ + 2.0 mol% TiCl ₃	T _{abs} : 473	6.0	2.1	
	T _{des} : 543			
Na ₃ AlH ₆ + 2.0 mol% Ti(OBu) ₄	T _{abs} : 443	3.0	2.3	
	T _{des} : 503			
NaAlH ₄ + Porous carbon	T _{des} : 673	10.0	7.0	
$NaAlH_4 + Non$ -porous carbon	T _{des} : 673	10.0	6.3	

Hydrogen Storage Technologies

Technology	Advantages	Disadvantages	Development stage	Future outlook
Compressed hydrogen storage	Low energy requirement Mature technology High purity hydrogen	Low energy density Requires high pressure storage systems Bulky storage tanks	Mature	Continued refinement and optimization, primarily for short- distance transportation and stationary storage
Underground hydrogen storage	Large-scale storage capacity Low environmental impact Long-term storage capability	Limited by geological formations Potentially high initial capital cost Monitoring and maintenance required	Mature, with ongoing research and development	Expansion in regions with suitable geological formations, complementing other storage technologies
Liquid hydrogen storage	High volumetric energy density Long-distance transportation Established technology for aerospace applications	Cryogenic temperature requirements Significant energy required for liquefaction Boil-off and evaporation losses	Mature	Likely to remain relevant for long-distance transportation and specific applications, such as aerospace
Solid-state hydrogen storage	High volumetric and gravimetric energy density Safer storage due to reduced pressure requirements More compact storage options	Complex material synthesis and handling Slow hydrogen uptake and release kinetics Temperature sensitivity for some materials	Emerging, with ongoing research and development	Promising potential for widespread use, pending advancements in material performance, cost reduction, and system integration

- > Long-term, reliable policies adoption to encourage novel technologies and market growth
- > Advanced Hydrogen production, purification and storage technologies
- Improved and low-priced electrolyzers
- Entire hydrogen industry chain such as hydrogen production, storage and transportation, fuel cells, hydrogen refueling stations and other scenarios should be accelerated. Besides, indepth integration and coordination with the oil and gas industry needs more attention, which will rapidly promote the high-quality development of the hydrogen industry system

Dr. Ramesh Kumar K, Dr. Madhavi Konni, Dr. Abinaya K, Dr. Prashant Mishra, Dr. T.A. Rajiv Kumar, Dr. B. Ramachandra Rao, Shri. Vipul Kumar Maheshwari and Dr. Raman Ravishankar



Thank you

Hydrogen Storage Systems-Current Status

HP GREEN R&D CENTRE