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Innovation for life

TNO key figures 2022

3897 1,000 42 876

Number of employees Public-private partnerships Lecturers professors Patents
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Market Development Forecast

Product
0 development
Currently 110 6 GW
Installed
Globally:
0.3 GW
Global ~300
MW
1l R :EQ 120 MW I
2015 2020 2024 2025

Source: IEA (2021), Global installed electrolysis capacity by region , 2015-2020 (link), Bloomberg, Hydrogen

e Mature market:
_ 7,000 GW
Upscaling:
4 to 60
GW 7% of projected

! Fitfor55
target

50%
green

2030

final energy
needs

Economy Outlook — Key messages, March 2020 (link), adapted by TNO

glob
H
H
I

2050

24% of projected
final energy need

Growth
factor
2020 — 2050:
~25000

Growth
factor
2020 - 2030:
~125
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https://www.iea.org/data-and-statistics/charts/global-installed-electrolysis-capacity-by-region-2015-2020
https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf

Integral system perspective on hydrogen

Import solar
and wind Qﬂq Fuel cell Synthetic
energy via H, ay electric vehicles fuels
— 0
=

= Refining of
Power oil/biomass

stations

Feedstock for
_) chemical sector,
Hydrogen Including NH,
(natural gas)
Electricity grid Infrastructure Manufacture
and processing

of steel

Exchange for @ Various applications

import/export as as industrial gas
Electricit .
storagey Hliite el m ¥ High-value heat
Heating of houses hEa for industry
\ J o
hd and buildings

Demand Side Management or Response

Wind

Solar PV
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Green Hydrogen Production: Vision & Mission

How Does TNO Contribute to Electrolyser Development?

Our To reach our climate goals we see green hydrogen as a key enabler to:

WSRO RS RVLGEE M« Improve the integration of renewable electricity in our energy system

* Decarbonise the carbon emitting sectors such as aviation, chemical & steel
industry

* Energy security with underground hydrogen storage and CO,-free dispatchable

Our
Mission

We contribute to:
In 2025

« Decreased production cost for green hydrogen by at least 30%
 Reduced use of scarce materials (PGM)

« Success of the electrolyser industry related to the hydrogen production
value chain
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TNO's green hydrogen activities aim to

N\

Deliver technical, social and policy innovations to accelerate the development of hydrogen as

a fuel and as an industrial chemical as part of the energy and materials transition

Promote the emergence of public-private green hydrogen ecosystems such as manufacturing

Systemic approach to technology development, technology value chain development, ecosystem
and infrastructure, and end-use applications of green hydrogen
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Green hydrogen R&D program at TNO

Trade-off between Efficient — Durable — Low cost

) In design and operation of electrolyser systems there are important trade-offs between efficiency, durability
and capital expenditure

Table: Example of trade-offs in design & operation

High current

D Durability
Efficiency Capex (Lifetime)
High catalyst
gh cataly 4 - +
loading
Cell design
Thick
) _ +
membrane
High
Operating temperature * ¥ ]
conditions
- + -

Cost of Hydrogen
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Concept of electrolyser generations

e Qurview on innovations & role of TNO

TRL7-9

TRL5-6

TRL2-4

* st generation

TNO Role
*  (Current technology used by OEM’s.

Substantial cost reduction possible by simply Integration
scaling-up support

* 2nd generation

* Development of improved components
(membranes, electrodes, coatings)

including
high volume manufacturing Accelerate

innovation
* 3rd generation
* Radically new architecture of cell and stack,
leading to breakthrough in performance and
use of scarce materials
Create new
Inventions
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GreenH, [m———====- 1

Snapshot Different companies and there are more to come g : !
()] (o) ! 1

o i | : 1 1

° c G _—

Electrolyser technologies g o i | :
8 = [ n-::m % :/\ MglOH), ’ — 1 :

= ! .!"' P ' J

E Seawater @y NaOH b : :

'%0 ———— b tzz=z==z== T==s

£ sHYp = wwn BB -1l

Atmospheric Pressurized alkaline PEM SOE AEM New electrolyser
: (atmospheric and pressurized) (high temp) concepts

alkaline Ay et RSN P

0
€ amm

Haldor Topso

) L=
L=

— Battolyser [—

b 10

Green Hydrogen systems g mm Sunfire Plug power = NEL Y= Alchemr B= -+
Not an extensive list, but it includes the current main players for each technology. Multiple technology developers and start-ups working on new generation technology especially in PEM and AEM__j
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Source: HyCC, Thijs de Groot (2022); adapted by TNO; different electrolyser suppliers


http://www.ginerinc.com/grid-level-energy-storage
http://www.ginerinc.com/grid-level-energy-storage

PEM Electrolysers

Key challenges

Scale + durability @ high performance, (scarce) material use, cost...

SoA Targets = 2200
No Parameter Unit 2
2020 2024 2030 &
. . . g 2,000
1 EleCtrICI’[){ consump_tlon KWh/kg 55 48 g
@ nominal capacity =
) Canital cost €/(kg/d) 2, {00, S S 1,000 © 1800
apiial cos €/kW 9 700 500
3 O&M cost €/(kg/d)ly 4‘\ 30 21 1,600
4 Hot idle ramp time sec 2 1 1 400
5 Cold start ramp time sec 30 10 10
6 Degradation %/1,000h 0.19 I NG S ) 0,12 200
7 Current density Alcm? 2.2 \ 24 3
Use of critical raw
8 matorials a5 catalysts mg/W 25 ﬁo.zs

FCH- JU State-of-the-Art (2020} and
2030 target performance modelled with
THND electrochemical model

2 2,5

Current density [A/cm=]

=]

Strategic Research and Innovation Agenda (SRIA)

Clean Hydrogen Joint Undertaking (Clean Hydrogen JU) 2021-2027 Adopted on 25-02-2022
https://www.clean-hydrogen.europa.eu/about-us/key-documents/strategic-research-and-innovation-agenda_en

= System efficiency = 72,1% (HHV)
— Estimated required stack efficiency = 78%
(assuming: Nacpc=95%, Npep=97%, Nr=99%)
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https://www.clean-hydrogen.europa.eu/about-us/key-documents/strategic-research-and-innovation-agenda_en

Electrolysers drive up the Demand for Nickel, Platinum and other minerals

Estimated levelised demand for selected minerals in electrolysers and fuel cells today

10
~ 800 kg Nickel per MW capacity
2
3 1
L
=
)
g 0.1
- X kg Platinum
0.01 er MW capacit
P PACY " 0.x kg Iridium
© per MW capacity
0.001 ®
0.0001

Nickel Zirconium Nickel Zirconium | Lanthanum Yttrium Platinum Palladium Iridium Platinum

Alkaline electrolyser SOEC electrolyser (SOFC fuel cell) PEM electrolyser Fuel cell
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Source: IEA (2021), The Role of Critical Minerals in Clean Energy Transitions (link)


https://iea.blob.core.windows.net/assets/24d5dfbb-a77a-4647-abcc-667867207f74/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf

Critical materials in electrolysers: a show stopper?

100 %

90 %

80 %

/0%

60 %

50 %

40 %

30 %

20 %

Fraction of global mining supply (%)

10 %

0%

Pt

Top producers of critical materials in

electrol

Co Ni

Source: European Commission, 2020.

ySe

Ir

| I | | I
Ta Gd Zr La Ce Y

Irena (2020) Green hydrogen cost reduction: scaling up electrolysers to meet the 1,5 C Climate goal (link)

@® South Africa
® Russia

Zimbabwe

T ® Congo
@® China
Canada
Japan
® Rwanda
@ Brazil
Australia

Germany
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https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf

Lower use of scarce materials

* Different strategies to reduction

% of CRM global annual supply used as a result of each strategy

L Higher
: Substitutio gher Extended :
CRM Base case Reduction productivit e Recycling
n lifetime
= [ | y
E Iridium 122% |—6-%—J 122% 81% 91% 122%
Platinum 25% 0.1% 0% 1% 21% 24%
Raney-Ni 0.4% 0% 0.8% 0.1% 0.3% 0.0%
@
MG 2% 2% 2% 0.6% 2% 2%
(class 1)
Cobalt 0.1% 0.1% 0% 0% 0% 0.1%
Source: TNO (2021), Part 1 - How raw materials scarcity can hinder our ambitions for green hydrogen and the ener TNO o :ation 15
transition as a whole (link), Part 2 - How we can prevent the scarcity of raw materials and achieve our ambitions Tor green

hvdroaen (link)


http://publications.tno.nl/publication/34638161/VxWQvP/gavrilova-2021-towards.pdf
http://publications.tno.nl/publication/34638161/VxWQvP/gavrilova-2021-towards.pdf

Business Case Decrease of production cost of electrolysers

Electricity price is determining the hydrogen cost

6,00
© CAPEX

4,00

Hydrogen cost [€/kg]

1000 750 500

Impact of investment Impact of electricity

cost [€/ kW]

H OPEX

2,OOIII III

50 40

cost [€/ MWh]

Two major costs:
) Electrolyser costs (CAPEX)
) Electricity costs (OPEX)

Base case (BC)

Investment cost
Depreciation
O&M

Electricity price
Operating hours
Efficiency

1000 €/kW
15% /year
2% lyear

50 Euro/MWh
8000 hours
60%
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Business Case

Decrease of production cost of electrolysers

When operating flexible, capex becomes dominant

Hydrogen cost [€/kg]

8,00

7,00

6,00

5,00

4,00

3,00

2,00

1,00

0,00

Cost reduction

® CAPEXE OPEX ) Stack

) Balance of plant and system
) Smart contracts with offshore wind

Increase profit
Multiple H, markets
Reference cost grey hydrogen increases

)
- )
% S = o ) Value of flexibility
S S o = ) Value of oxygen
S . _ ) Value of heat
> S
<
Operational hours per year
€1000/KW €750/ KW €500/ KW
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Projected Learning Curve | Electrolyzer Investment Costs

SDE++ (2021)  The learning rate of all

ISPT (2020) ——High ——Llow electrolyser technology varies
2000 f e between 12-20%. However, it
will differ between PEM,

1600 TNy Alkaline, SOE.

- IRENA (2050)

)
=
-
=
R 1200 P\ (.- - s _
S : ' [EA ETP (2050) « PEM and SOE can benefit
— 1
E 800 Lo T i from fuel cell developments
: R 5
g 400 bog T FR « To reach a cumulative installed
Lo l B capacity of 100 GW in 2030,
1 1 ] 1 1 [ 1 L1 ] . .
0 annual installation need to
20 40 80 160 320 640 1280 2560

double each year until 2030

Cumulative installed capacity (GWe)

C 2030 |
! High: 1100 — 1350 :
:_ (Euro/kWe) .

Low: 650 — 850 (Euro/kWe)

Source: TNO (2022) Projections of electrolyzer investment cost reduction through learning curve analysis (link),
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https://energy.nl/wp-content/uploads/tno-2022-p10111_detzweeda_projections-of-electrolyzer-investment-cost-reduction-through-learning-curve-analysis.pdf

Developing the electrolyser supply chain

Industrial value chains of (green) hydrogen §

lI. Hydrogen production supply chain

|

|

|

| :

! I. Supply chain

| electrolyser components
: H> , H_}rd rogen Hydrogen Grid Elechticity

I End-user distributor producer operator provider

_ o _ __________ High-tech equipment & materials Eoiri
providers

Jl Technology

Sep. Plate Starting material

Systemn

: forming Bipolar plate
integrator

Electrode Starting material

|
I

[

I

[

I

[

I

[

I

[

I

Power Module Stack design I
manufacturing electrode !
I

[

I

[

I

[

I

[

I

[

|

[

I

electronics integration & Assembly

Other BoP
components

MEA Mining/PGM
provider supplier

II. Supply chain electrolyser system Roll-to-roll e — T —

equipment manufacturer producer



How to accelerate the technology development?

* (et out the Lab faster into industrial Demo’s

S Industrial electrification Water electrolysis Offshore H2 production

Lab scat@cilities
Up to 50 KW
TRL 2-5

Hydag Pilot
i0fe green h_yi:irogeri ~ !

Industrial Scale
0.1-1 MW
TRL 5-6

i

Demonstration

Multi MW
TRL 6-7 In progress In progress In progress

20
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=l S pillars of the TNO electrolysis program ‘Clean Hydrogen Production’

Our Added Value in the Electrolyser Value Chain

SYSTEM
INTEGRATION

Developing models

Sensors & state-of-
health

Monitoring & Control
solutions

Use cases

Offshore electrolysis

ACCELERATE
LEARNING CURVE

State-of-art facilities

Protocols for
fabrication & testing
of components,
cells & stacks

Validation &
benchmarking

Accelerated testing

GENERATION PEM

TECHNOLEOGY
Novel materials &

components incl.
manufacturing

Optimal integration in
cells & stacks

2nd & 3rd generation
PEM

NEXT
GENERATION SOE

TECHNOLOGY
Large scale SOE cell

development,
manufacturing
& validation

Cell development

2"d generation SOE

Manufacturing Technology: Component & System Interaction

BREAKTHROUGH
TECHNOLOGY

Developing new
& disruptive game
changing electrolyser
concepts

Scouting technology

High-Performance
AWE

AEM

Focus areas

Value from System Engineering: Using feedback/feedforward of knowledge on the entire chain
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Introduction How can we accelerate innovation?

From PEM cell development towards industrial scale

. _ Accelerated life time validation and benchmarking
Rapid prototyping R

%

'NE

Cell manufacturmg
6505 = -
2 ‘44“" -\)— 2 \'\

q
>
v

/4 TNO 75

Source: TNO (2022) TNO PEM El‘rectrolyser research facilities in Petten and Gromngen (Netherlands)
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the world’s largest open electrolyser test centre

* MW Test Center
* TNO Develop & build 250 kW PEM stack .

*  Commission system in Groningen (NL) é
*  Modelling thermal behaviour of stack —

* Static and dynamic operating conditions

*  Advanced process control op—

(il




Next Generation PEM Electrolyser Technology
Summary

Addressing Technical Challenges for Electrolysers

* Scalable, low-cost technology Lennart van der Burg
: Cluster manager

» Drasticreduction in critical raw materials use
N Lennart.vanderburg@tno.nl
 TNO’s ultra-low Iridium concept R +31 6 43 95 46 85

* Performance, reproducibility, and durability improvements at 100x lower
Iridium.

* High durability at high performance

Accelerating Innovation ¥ - Y Rajesh Mehta

, . Senior Consultant
N [ . * . P—
Parallel development of technology generations | " Energy and Materials Transition

Rajesh.mehta@tno.nl

* large initiatives
+91-7829815000

* Shared programs for accelerating innovation
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