Innovation for life

Strategies to accelerate the energy transition using

 \bigcirc

- next-generation electrolyser technologies for green hydrogen
- Keynote Presentation by Rajesh Mehta Senior Consultant, Energy and Materials Transition, TNO, The Netherlands
 - World Hydrogen Energy Summit 2023, 16-17 October 2023, Delhi, India

Talk Outline

- **1.** Introduction **T**NO
- 2. TNO H₂ program
- 3. Key Research Challenges
- 4. Low Iridium technology as a promising solution for PEM
- 5. **Business case** current & future cost of green hydrogen
- 6. Accelerating Innovation
- 7. Summary

Netherlands Organisation for Applied Scientific Research

TNO key figures 2022

3897	1,000	42	876
Number of employees	Public-private partnerships	Lecturers professors	Patents

Market Development Forecast

Source: IEA (2021), Global installed electrolysis capacity by region , 2015-2020 (<u>link</u>), Bloomberg, Hydrogen Economy Outlook – Key messages, March 2020 (<u>link</u>), adapted by TNO

Integral system perspective on hydrogen

NO innovation for life

How Does TNO Contribute to Electrolyser Development?

Our Vision on Hydrogen	 To reach our climate goals we see green hydrogen as a key enabler to: Improve the integration of renewable electricity in our energy system Decarbonise the carbon emitting sectors such as aviation, chemical & steel industry Energy security with underground hydrogen storage and CO₂-free dispatchable power
Our Mission In 2025	 We contribute to: Decreased production cost for green hydrogen by at least 30% Reduced use of scarce materials (PGM) Success of the electrolyser industry related to the hydrogen production value chain

TNO's green hydrogen activities aim to

Deliver technical, social and policy innovations to accelerate the development of hydrogen as a fuel and as an industrial chemical as part of the energy and materials transition

Promote the emergence of public-private green hydrogen ecosystems such as manufacturing

Systemic approach to technology development, technology value chain development, ecosystem and infrastructure, and end-use applications of green hydrogen

Green hydrogen R&D program at TNO

Trade-off between Efficient – Durable – Low cost

In design and operation of electrolyser systems there are important trade-offs between efficiency, durability and capital expenditure

Table: Example of trade-offs in design & operation

		Efficiency	Capex	Durability (Lifetime)
Cell design	High catalyst loading	+	-	+
	Thick membrane	-	-	+
Operating conditions	High temperature	+	+	-
	High current	-	+	-

Concept of electrolyser generations

Our view on innovations & role of TNO ۲

kW		TNO Role
	1st generation	
rrl7-9	 Current technology used by OEM's. Substantial cost reduction possible by simply scaling-up 	Integration support
TRI	• 2nd generation	
5-6	 Development of improved components (membranes, electrodes, coatings) including high volume manufacturing 	Accelerate innovation
TRL5-6	3rd generation	milovation
	• Radically new architecture of cell and stack.	

Create new Inventions

innovation

Snapshot Different companies and there are more to come

Electrolyser technologies

11

Not an extensive list, but it includes the current main players for each technology. Multiple technology developers and start-ups working on new generation technology especially in PEM and AEM

Source: HyCC, Thijs de Groot (2022); adapted by TNO; different electrolyser suppliers

PEM Electrolysers

Key challenges

Scale + durability @ high performance, (scarce) material use, cost...

	_	Unit	SoA		Targets		
No	Parameter		2020		2024	2030	
1	Electricity consumption @ nominal capacity	kWh/kg	55			48	
2	Capital cost	€/(kg/d) €/kW	2,100 900		700	1,000 500	
3	O&M cost	€/(kg/d)/y	41		30	21	
4	Hot idle ramp time	sec	2		1	1	
5	Cold start ramp time	sec	30		10	10	
6	Degradation	%/1,000h	0.19			0.12	
7	Current density	A/cm ²	2.2		2.4	3	
8	Use of critical raw materials as catalysts	mg/W	2.5			0.25	

Strategic Research and Innovation Agenda (SRIA) Clean Hydrogen Joint Undertaking (Clean Hydrogen JU) 2021-2027 Adopted on 25-02-2022 https://www.clean-hydrogen.europa.eu/about-us/key-documents/strategic-research-and-innovation-agenda_en

- \Rightarrow **System** efficiency = 72,1% (HHV)
- $\Rightarrow \text{ Estimated required stack efficiency} = 78\%$ (assuming: η_{ACDC} =95%, η_{BoP} =97%, η_{F} =99%)

innovation for life

Electrolysers drive up the Demand for Nickel, Platinum and other minerals

Source: IEA (2021), The Role of Critical Minerals in Clean Energy Transitions (link)

innovation

Critical materials in electrolysers: a show stopper?

Source: European Commission, 2020.

Irena (2020) Green hydrogen cost reduction: scaling up electrolysers to meet the 1,5 C Climate goal (link)

innovation

Lower use of scarce materials

• Different strategies to reduction

% of CRM global annual supply used as a result of each strategy

_	CRM	Base case	Reduction	n Substitutio n	Higher productivit y	Extended lifetime	Recycling
PEM	Iridium	122%	<u>6%</u>	122%	81%	91%	122%
	Platinum	25%	0.1%	0%	1%	21%	24%
_	Raney-Ni	0.4%	0%	0.8%	0.1%	0.3%	0.0%
AEL	Nickel (class 1)	2%	2%	2%	0.6%	2%	2%
	Cobalt	0.1%	0.1%	0%	0%	0%	0.1%
		Strategy with most potential					

Source: TNO (2021), Part 1 - How raw materials scarcity can hinder our ambitions for green hydrogen and the energy transition as a whole <u>(link</u>), Part 2 - How we can prevent the scarcity of raw materials and achieve our ambitions for green hydrogen (link)

TNO innovation for life

Business Case Decrease of production cost of electrolysers

Electricity price is determining the hydrogen cost

Two major costs:

>Electrolyser costs (CAPEX)

> Electricity costs (OPEX)

Base case (BC)				
Investment cost	1000 €/kW			
Depreciation	15% /year			
O&M	2% /year			
Electricity price	50 Euro/MWh			
Operating hours	8000 hours			
Efficiency	60%			

TNO innovation for life

When operating flexible, capex becomes dominant

Cost reduction

-) Stack
- > Balance of plant and system
- > Smart contracts with offshore wind

and

Increase profit

- > Multiple H_2 markets
- Reference cost grey hydrogen increases
- Value of flexibility
- > Value of oxygen
- > Value of heat

Operational hours per year

Projected Learning Curve | Electrolyzer Investment Costs

- The **learning rate** of all electrolyser technology varies between 12-20%. However, it will differ between PEM, Alkaline, SOE.
- PEM and SOE can benefit from fuel cell developments
- To reach a cumulative installed capacity of 100 GW in 2030, annual installation need to double each year until 2030

Source: TNO (2022) Projections of electrolyzer investment cost reduction through learning curve analysis (link),

innovation

Developing the electrolyser supply chain

How to accelerate the technology development?

• Get out the Lab faster into industrial Demo's

ΤΝΟ	Industrial electrification	Water electrolysis	Offshore H2 production
Lab scafecilities Up to 50 KW TRL 2-5			
Industrial Scale 0.1- 1 MW TRL 5-6			Postivdon Pilot Offshöle green hydrogen PLuija PR
Demonstration Multi MW TRL 6-7	In progress	In progress	In progress

Introduction

5 pillars of the TNO electrolysis program 'Clean Hydrogen Production'

Our Added Value in the Electrolyser Value Chain

Introduction How can we accelerate innovation?

From PEM cell development towards industrial scale

Rapid prototyping

Accelerated life time validation and benchmarking

Source: TNO (2022) TNO PEM Electrolyser research facilities in Petten and Groningen (Netherlands)

the world's largest open electrolyser test centre

- MW Test Center
- TNO Develop & build 250 kW PEM stack
- Commission system in Groningen (NL)
- Modelling thermal behaviour of stack
- Static and dynamic operating conditions
- Advanced process control

Next Generation PEM Electrolyser Technology

Summary

Addressing Technical Challenges for Electrolysers

- Scalable, low-cost technology
- Drastic reduction in critical raw materials use
- TNO's ultra-low Iridium concept
 - Performance, reproducibility, and durability improvements at 100x lower lridium.
- High durability at high performance

Accelerating Innovation

- Parallel development of technology generations
- Large initiatives
- Shared programs for accelerating innovation

Want to know more? Please contact us !

Lennart van der Burg Cluster manager Lennart.vanderburg@tno.nl +31 6 43 95 46 85

Rajesh Mehta Senior Consultant Energy and Materials Transition Rajesh.mehta@tno.nl +91-7829815000