About Bureau of Energy Efficiency, India

- **>** Established in 2002 under Energy Conservation (EC) Act
- > To discharge regulatory functions on energy efficiency and energy conservation
- > Provides the legal framework for promoting energy conservation activities:
 - Standards and Labelling for appliances & equipment
 - Energy Consumption norms for energy intensive industries
 - Demand Side Management (DSM) programmes
 - Energy Conservation Building Code (ECBC) for commercial buildings
 - Certification of Energy Auditors and Managers
- Mission Directorate for National Mission for Enhanced Energy Efficiency (NMEEE)
- > Supported by States Designated Agencies (SDAs) at State level
- For implementation of Energy Projects, Ministry created Energy Efficiency Services Limited (EESL).
- EC Act amended in 2010 and 2022.

Journey of BEE towards making an Energy Efficient India

/s Life

Bureau of Energy Efficiency, Ministry of Power, Government of India

India - energy scenario

- Only 18% of total energy consumption is electricity.
- Rest 82% is from fossil fuels (Oil, coal, Natural Gas etc)
- > 3rd largest greenhouse emitter.
- Per capita emissions only one-third of the global average

Announcements

- □ India will increase its non-fossil energy capacity to 500 GW by 2030.
- India will meet 50 percent of its installed power capacity from non-fossil energy by 2030.
- □ India will reduce the total projected carbon emissions by one billion tonnes from now to 2030.
- □ By 2030, India will reduce the carbon intensity of its economy by 45 percent as compared to 2005 level
- □ By 2070, India will achieve the target of net zero emissions.

Target to achieve 45% Emissions Intensity Reduction

क्र जीवन है, संरक्षण	
B E E	

	Year 2005	Year 2016	Year 2019	Emissions on 33%	Emissions on 45%
	(Base year)	(As per BUR-3)	(Estimated)	reduction	reduction
Emissions Intensity	27.79	21.12	19.73	18.62	15.28
[gCO2e/INR GDP at 2011-12 prices]	(Base)	(24%)	(29%)	(33%)	(45%)
GDP Projection (INR Lakh crore)		123	145	300	300
Emissions in 2030 as per base year (2005)		3418	4029	8337	8337
Net Emissions (Actual/Projected)		2597	2861	5586	4584
Emission reduction required (2030)				2751	3753
Emissions reduction achieved	-	821	1168	2418	2418
Additional emission reduction required				333	1335
2020-30					

Roadmap to achieve 45% Emissions Intensity Reduction (CO₂ Savings of One Billion Tonne by 2030)

Emission in 2030		Emissions (MtCO2e)		
Targeted Reduction (over baseline)		3753 (8337 – 4584)		
For GDP-300 INR Lakh Crore				
Reduction achieved (upto 2019-20)		2418		
Additional savings required (2020-30)		1335		
Energy emissions Power Generation		731		
(Targeted reduction)	(Supply Side)			
	Energy Efficiency	740		
	(Demand Side)			
	Total	1471		

Part B: Demand Side Initiatives (All figures in MTCO2)

S. N.	Sector	Activity Area	BAU Emission (2030)	Target Emission (2030)	CO ₂ Emission reduction	Programme	
1.	Industrial (including MSME)	Energy intensity improvement in large industry, Use of clean tech in MSMEs	1685	1310	312	 PAT Scheme SME Progarmme Tech. Upgradation 	
2.	Transport	Improving fuel efficiency of vehicles, Adoption of EVs, Modal shift from road to rail	844	619	187	 Fuel efficiency norms Electric Mobility Net zero Railway / Modal Shift 	
3.	Domestic	Deployment of LEDs, Use of efficient appliances, Energy efficient homes	683	543	116	 UJALA Star Rated Appliances ECO Niwas Samhita 	
4.	Commercial	Energy efficient /NZ buildings, Use of efficient appliances	320	230	75	ECBC , Net Zero CampusStar Rated appliance	
5.	Agriculture	Solarization of Diesel Pumps, Promoting Star Rated pumps	269	229	33	KUSUMDSM	
6.	Municipal	Deployment of energy efficient streetlights and pumps	98	78	17	SLNPDSM	
	Sub-total		3899	3009	740		

PAT - Sectoral Coverage

and Services)

Crackers and **Petroleum Refinery**

distribution companies;

Electricity transmission companies and

14. Thermal Power Stations, Hydel Power Stations,

Commercial Buildings or Establishment

	99
Criteria for Identification of Sectors	Sectors in PAT Scheme
 Listed in Schedule of EC Act Intensity or quantity of energy consumed Amount of investment needed Capacity to invest Availability of energy efficient technology 	 Aluminum; Fertilizers; Iron and Steels; Cement; Pulp and Paper; Chlor-Alkali; Sugar; Textile; Chemicals; Railways; Port Trust Transport Sector (Industries and Services Petrochemical, Gas Crackers, Naphtha

15.

Achievements of PAT programme (2012-2022)

Energy Conservation (Amendment) Act 2022

Key Areas

- 1. Non-fossil Source usage norms (Hydrogen/ Renewable)
- 2. Framework for Carbon Markets
- 3. Buildings Sector
 - Inclusion of Large Residential Buildings
 - Enhanced scope of Building Code to include renewables
- 4. Strengthening Implementation
 - Rationalizing Penalty Provisions
 - Functions of State Electricity Regulatory Commissions
- 5. Other Amendments

- Notified on 20th Dec, 2022

- Effective from 1st Jan, 2023

- 6 million tonnes per year
- Production from natural gas reforming
- Global hydrogen consumption approx.
 100 MMT
- Expected to increase by 5 fold by 2050

Green Hydrogen: Focus Areas

Hydrogen Demand Scenario

Global Hydrogen Demand - 90 MT/Yr. to grow to over 200 MT/Yr. by 2030 and over 500 MT/yr by 2050 and over 600 MT/yr in 1.5 deg C scenario.

Majority of Hydrogen (95%) Globally presently is produced by Natural Gas Reforming except in China where Coal based Gasification technology is predominant source.

Hydrogen demand >98 % is dominated by refining and ammonia production.

India Hydrogen Demand – 6.7 MT/Yr. (7-8% of Global demand) which will grow to around 13 MT/yr by 2030 (excluding exports proposed for Green Ammonia) and may grow fourfold (including exports) by 2050 representing 10 % of global demand.

In Net Zero Scenario of IEA, by 2050, 10% of Global Energy Demand and one third of Hydrogen demand will be for Hydrogen based fuels like ammonia, synthetic kerosene and synthetic methane.

National Green Hydrogen Mission

National Green Hydrogen Mission - Outlay

		Mission Components	Amount (🛛 Crore)	Amount (🛛 Crore)	
	i.	Strategic Interventions for Green Hydrogen Transition (SIGHT)	17,490		
Outlay	ii.	Support for low-carbon Steel projects	455	18,133	
recommended till 2029-30	iii.	Human Resource Development	35		
2023 30	iv.	Public Awareness and Outreach	70		
	V.	Programme Management	83		
	vi.	Support for Shipping and ports projects	115		
Outlay	vii.	Support for Mobility projects	496		
recommended till	viii.	GH ₂ production technologies, storage, hubs, etc.	400	1,611	
2025-26	ix.	R&D Projects	400	·	
	х.	Testing Facilities, Development of Standards	200		
		Total		19,744 ₂₉	

Resource Availability & Potential Project Locations

State-wise RE Potential

Potential Offtake of Green

Likely project locations

Bureau of Energy Efficiency, Ministry of Power, Government of India

Hydrogen Trade Opportunities

Potential importers: Korea, Japan, EU, Germany

Potential exporters: India, Canada, Australia, Chile, Gulf Countries, North Africa

Hydrogen likely to be traded in form of derivatives (Green Ammonia, Green Methanol etc.)

Over 210 Million Tonne of Hydrogen Demand by 2030, about half of it from Green sources (IEA)

33

Provision in EC Act for Demand Creation

The Energy Conservation Act, 2001

The Energy Conservation (Amendment) Act 2022

Clause 14 (g): Establish and prescribe such energy consumption norms and standards for Designated Consumer

Clause 14 (n): Direct every Designated Consumer to comply with Energy Consumption norms and standards Amendment in section 14 : Clause 6 (x): Specify minimum share of consumption of non fossil source by Designated Consumer as energy and feedstock, provided different share of consumption may be specified for different types of non fossil sources for different DC

Challenges to transition to Green Hydrogen

- **High Production Costs:** Green hydrogen production is currently more expensive compared to hydrogen produced from natural gas through steam methane reforming (SMR). The high initial costs of renewable energy infrastructure and electrolysis technology make green hydrogen less economically viable for refineries.
- Limited Renewable Energy Supply: Availability and reliability of renewable energy sources like wind and solar can be intermittent. Refineries require a consistent and reliable hydrogen supply, making it challenging to depend entirely on renewable sources for green hydrogen production.
- Infrastructure Challenges: Existing hydrogen infrastructure in refineries is primarily designed for grey hydrogen and may not be compatible with green hydrogen. Retrofitting or building new infrastructure to accommodate green hydrogen can be costly and time-consuming.
- Storage and Transportation: Hydrogen has low energy density by volume, which means it requires large storage tanks or compression at high pressures, both of which come with their own set of challenges and costs. Additionally, there are safety concerns associated with handling and transporting hydrogen due to its low ignition energy and high reactivity. As many of the refineries are facing space constraint, storage and transportation standards are required.

Challenges to transition to Green Hydrogen

Implementation Timeline: Establishing the necessary infrastructure and commissioning a green hydrogen plant in a refinery typically takes approximately 2-3 years.

 Requirement in revision in energy banking policies: India's energy banking policies need significant revisions to encourage the widespread adoption of solar and green hydrogen technologies.

Other

- Absence to access the General Network Access across states and industries.
- 5 MT of green hydrogen will need 125 GW of green power. We need to aim to have it in addition to 500 GW target meant for grid electricity.
- India's current demand of hydrogen is 6.7 MT/Yr. which will grow to around 13 MT/Yr by 2030. Even with 5 MT/Yr of
 green hydrogen, we will have to continue to produce almost the current production of grey or blue hydrogen till 2030 or
 beyond.
- Availability of land for solar panels and availability of demineralized water at the place of hydrogen production could be a challenge when we want to increase the supply of green power and hydrogen.
- The efficiency of electrolysers need to be higher and cost need to lower with sources of indigenous components supply, including membrane, etc. to be developed.
- The cost of storage and supply of hydrogen is a significant cost which will need to be optimized.

To facilitate cost effective achievement of India's enhanced NDC targets and future NDC goals

- To mobilize new mitigation opportunities through demand for emission reduction credits by private and public entities.
- To mobilise a significant portion of investments in clean technologies required by growing economy to transit toward low-carbon pathways.
- To leverage the potential international collaboration and financing opportunities under Article 6 of the Paris Agreement.

Global Perspective - Carbon Pricing Instruments (CPI)

- Key aspect of CPI is the "polluter pays" principle
- Its broad goal is to **discourage the use** of carbon dioxide-emitting fossil fuels
- An approach to reduce emissions that passes the cost of emissions on to emitters.
- Price on carbon **creates financial incentives** to reduce emissions.
- Globally 73 CPIs of which 36 are emission trading systems

National Steering Committee for Indian Carbon Market (NSCICM)

Emission Coverage and market size – More than 1000 entities having 35-40% of India GHG Emissions and INR 8000-10,000 Cr market size

Technology Adoption: Cleaner and more efficient technologies, fostering innovation and sustainable growth

Facilitating more market opportunities - Attract investments and finance in emission reduction projects and opportunities for Green jobs

Incentivising the emerging solutions by the Government in areas of Green Hydrogen, Biofuel, EV mobility and many such initiatives

Enabling opportunities for bilateral approaches to attract finance for emerging technologies (Article 6.2 of the Paris Agreement)

<u>Meeting CBAM Requirements</u> – Aligning MRV and the possibility of reduced impact resulting from lower embedded emissions

Enabler towards Net Zero Emissions

51

Hydrogen Production in Refinery

Hydrogen Production in Refinery

Total Natural Gas consumed Total Natural Gas produced Total Natural gas imported Cost of Import

- 59969 MMSCM
- 33,664 MMSCM
 - 26,647 MMSCM
 - 17.9 billion USD

Total Grey Hydrogen required for Refinery sector-2.1 Million Tonne3.3 MT (4372 SCM) Natural Gas is required to Produce 1 Tonne Grey Hydrogen

Assuming entire grey hydrogen is produced from NG,

9182 MMSCM Natural is required for producing 2.1 Million Tonne Grey Hydrogen.

Import Saving in Natural Gas

The Foreign exchange Outgo

- 6.167 billion USD - Rs 49336 Crore

(Assuming replaced NG was imported)

If we replace 10% Grey H2, Saving in Foreign Exchange

- 616 Million USD

4.0 Lakh/ton

- Rs 4933 Cr

-

Estimated Cost of Green H2 Additional Cost of 10% replacing Grey H2

2.5*0.21*10^6 = Rs 5250 Crore