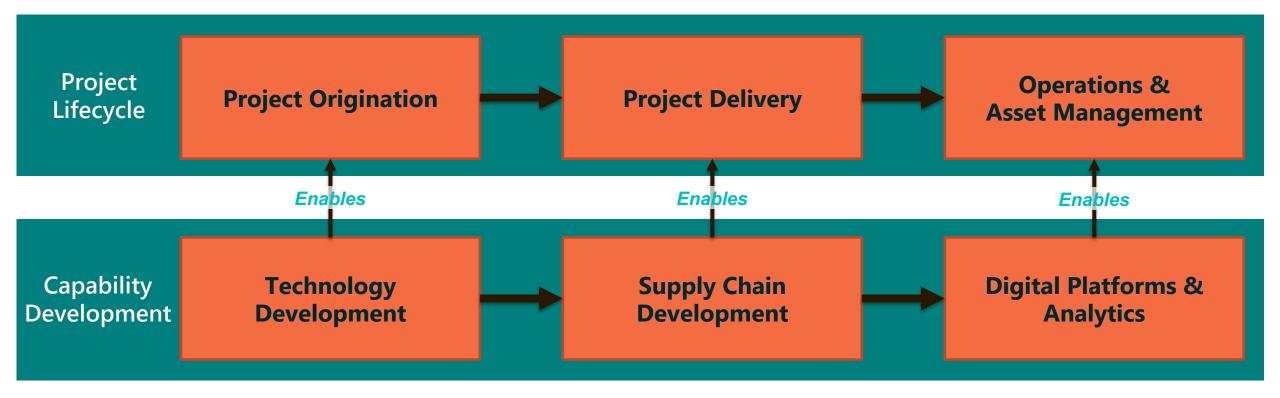
Barriers to scaling heavy duty hydrogen infrastructure


World Hydrogen Energy Summit 2021

Matthew Blieske CEO & Co-Founder

© 2021 LIFTE H2 Inc.

The unseen barrier: Bankable hydrogen mobility projects and supply chain development are highly interdependent

Defining Heavy Duty Mobility

20-35 kg tanks 15-35 kg daily consumption 35 MPa refuel rates depend on cycle times

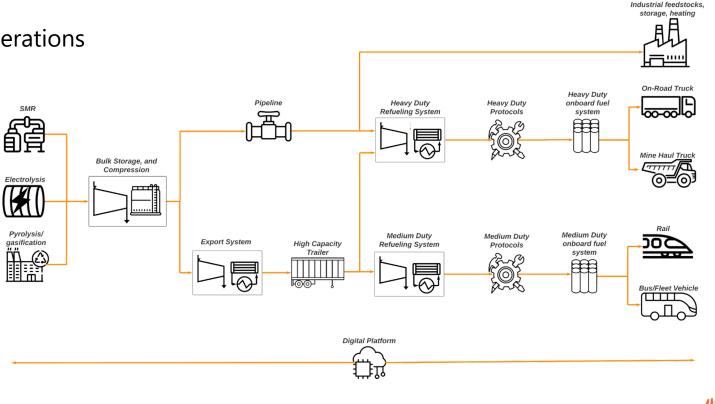
50-80 kg tanks 30-70 kg daily consumption 35-70 MPa 8 kg/min refuel rates

Heavy Duty

300-500 kg tanks 800-1200 kg daily consumption 35-70 MPa 15 kg/min refuel rates

Ultra Heavy Duty

Medium Duty


H2 Supply Chains are a System of Systems

The supply chain needs design, safety management, and operation as a single system of systems to achieve:

- *\$/kg* that is bankable
- **Availability** that delights customers
- **Safety** that the public deserves
- **Performance** that meets the needs of operations

Common reasons supply chains are not well integrated:

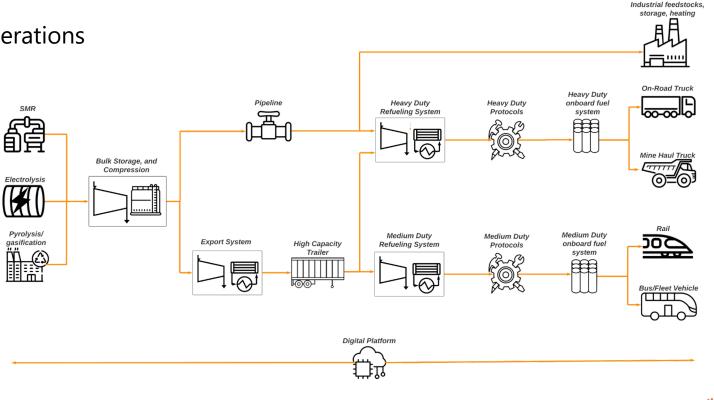
- Interfaces between technologies are not designed, or managed throughout the project lifecycle
- Competencies and experience in hydrogen equipment & operations is rare
- Modifying technologies and associated interfaces has no payback for a single project. Needs a portfolio and roadmap approach.

H2 technology needs scaling for HD & UHD

Supply Chain Element	Current State Of The Art	Required for Scaled Deployment	
Refueling Stations (70 Mpa)	1-2 HD truck per hour, with long recovery periods	 5-10 HD truck per hour, back to back fill 2 UHD vehicles per hour, back to back fill 	
Refueling Protocols	 3 kg/min @ 35 MPa best available Early prototypes for 3-5 kg/min @ 70 MPa in controlled environments 	 For HD: 10 kg/min @ 70 MPa, 100 kg tanks For UHD: 15 kg/min @ 70 MPa, 500 kg tanks 	
Export Compression	 25 kg/h @ 65 MPa 50 kg/h @ 45 MPa 	 2500 kg/h @ 65 MPa (trailer export) 4500 kg/h @ 10 Mpa (pipeline export) 	
GH2 Trailers	1100 kg capacity @ 500 bar ~1.5-1.8 million USD per trailer	1500 kg capacity @ 550+bar 60% cost reduction	
Liquefiers	80-100% turndown capability 11,000,000 USD/TPD 13-15 kWh/kg	0-100% turndown 50% cost reduction <8 kWh/kg	
Refueling components	60 g/s @ 70 Mpa, -40C 120 g/s @ 35 Mpa, -10C	For HD: 180 g/s @ 70 MPa, -40C For UHD: 250 g/s @ 70 MPa, -40C	
Chilling	30-50 kW @ -40C	300 kW @ -40C for GH2 refueling stations 600-800 kW @ -20C for GH2 trailer export systems	
Transfer losses	LH2: 10-20% loss GH2: 5-10% loss	<3 %	

Other barriers to scaling

Barrier Options to enable growth		
Limited access to hydrogen experience	 Investment in talent engines Attract talent from other technology industries such as high tech, biotech, automotive, oil and gas. 	
Lack of firm hydrogen demand	 Demand, H2 production & infrastructure/operations integrated deals Cheaper and available vehicles!!! 	
Products are unreliable, cost too much, and not fit for purpose	 Investment in continuous improvement ecosystems Investment in higher capacity products 	
Poor asset management & maintenance	 Digital operations & training Reliability growth programs, analytics engines 	
Incumbents have a vertical integration business model	 Decouple technology access from molecule supply Differentiate from the merchant gas, or capitalized lease models of IGCs 	
Technical standardization is low	Tightly couple lighthouse commercial project needs and schedules to standards committee agendas	
Supply Chains are commercially weak and not integrated	 Move from transactional procurement to open technology ecosystems Move away from focus on individual technologies to the supply chain as a product 	

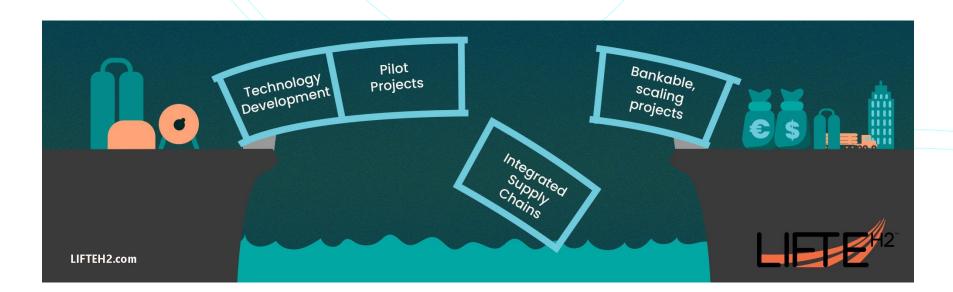

H2 Supply Chains are a System of Systems

The supply chain needs design, safety management, and operation as a single system of systems to achieve:

- *\$/kg* that is bankable
- **Availability** that delights customers
- Safety that the public deserves
- **Performance** that meets the needs of operations

Common reasons supply chains are not well integrated:

- Interfaces between technologies are not designed, or managed throughout the project lifecycle
- Competencies and experience in hydrogen equipment & operations is rare
- Modifying technologies and associated interfaces has no payback for a single project. Needs a portfolio and roadmap approach.



What is LIFTE H2?

Scalable & Profitable Hydrogen Projects

GLOBAL SUPPLY CHAIN INTEGRATION PRODUCT DEVELOPMENT DIGITAL PLATFORM

REGIONAL PROJECT DEVELOPMENT OPERATIONS

